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1 INTRODUCTION

Methods and models for network clustering have long been at the core of social network
analysis (see Scott, McLevey, and Carrington 2024). Since the 1970s, network cluster-
ing has developed along two deeply intertwined conceptual paths: one focusing on co-
hesive subgroups and assortative community structure (e.g., see Moody and Mucha 2024),
the other focusing on equivalence, social roles, and structural positions (e.g., see Dorien,
Ferligoj, and Batagelj 2024).

Early research on social cohesion sought to identify fully connected subgroups in friend-
ship networks (Festinger 1949; Luce and Perry 1949), while later work would focus more
on social homophily or heterogeneity among closely connected groups (Friedkin 1984;
Collins 1988; Erickson 1988). Increases in the size and complexity of network data has
driven the development of many new methods for measuring social cohesion (Wasser-
man and Faust 1994), and for scaling up to large networks in reasonable timespans. The
well-known and oft-employed Louvain algorithm for optimizing modularity (Blondel et
al. 2008) and the improved Leiden algorithm (Traag, Waltman, and Van Eck 2019) are
noteworthy contributions to this line of work.

The other path, which we are primarily concerned with in this chapter, seeks to cluster
nodes based on a structural and/or probabilistic definition of node “equivalence,” such as
having identical sets of ties to other nodes. However defined, the concept of equivalence
enables researchers to reduce complex networks into simplified representations of the re-
lationships between positions, roles, or “blocks.” We provide a brief high-level overview of
this work below; interested readers can find more a more detailed account of role theory
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and positional analysis in Dorien, Ferligoj, and Batagelj (2024), which focuses on general-
ized blockmodeling. In most of this chapter, we will focus on a probabilistic approach to
blockmodeling: the hierarchical Bayesian stochastic blockmodel.

This chapter in organized in two parts. The purpose of the first is to introduce foundational
ideas related to (a) equivalence and blockmodeling, (b) Bayesian inference and latent vari-
able models, and finally (c) the synthesis of these ideas in the form of Bayesian stochastic
blockmodels (BSBMs). In the second part of the chapter, we focus on two empirical ex-
amples that illustrate some important considerations when developing and interpreting
BSBMs.

2 FOUNDATIONAL IDEAS

2.1 Equivalence and Blockmodels

Unlike network clustering methods that are primarily concerned with cohesion and con-
nectivity, blockmodels are ultimately concerned with the concept of equivalence. In a clas-
sic paper, Lorrain and White (1971) introduced in the idea of “structural equivalence” as
follows:

𝑎 is structurally equivalent to 𝑏 if a relates to every object 𝑥 of [the set of nodes]
𝐶 in exactly the same ways as 𝑏 does. From the point of view of the logic of
the structure, then, 𝑎 and 𝑏 are absolutely equivalent, they are substitutable
(Lorrain and White 1971, 63).

From the start, this work has been highly influenced by anthropological role theory, specif-
ically the work of SF Nadel ([1957] 2013), who emphasized the inherent complexity of mea-
suring social roles and positions. The overarching goal of early work on blockmodels was
to algorithmically reduce complex networks to simplified models of the relationships be-
tween structurally distinct social roles, or “positions.” Any possible partition produced by a
blockmodel could represent an imperfect proxy of the role structure. H. White, Boorman,
and Breiger (1976) acknowledge this explicitly in their classic paper: “the blockmodels
of this paper can be said to identify positions, but only in an elementary sense” (p. 734).
With Nadel ([1957] 2013), they contend that data on many types of ties are needed to
apprehend social structure, and it is therefore important to consider multiple models (H.
White, Boorman, and Breiger 1976). Robins (2011) echoes this sentiment, suggesting that
although social networks are “built by social processes that are ongoing and multiple,” pat-
terns in network data “provide evidence from which we may infer something of the social
processes that build the network” (484). In short, it is not necessarily the case that struc-
turally equivalent nodes perform the same social roles, and no single blockmodel can hope
to capture the totality of a social dynamic within a given network.

The earliest blockmodels used a variety of deterministic approaches to partition empirical
networks into clusters of equivalent nodes (Arabie, Boorman, et al. 1982; Arabie, Boorman,
and Levitt 1978; Boorman and White 1976; Breiger, Boorman, and Arabie 1975; Light and
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Mullins 1979; H. White, Boorman, and Breiger 1976; Wasserman and Faust 1994). How-
ever, the requirement that nodes be perfectly interchangeable was proven to be too strict
in practice, especially given the complexity of social relationships and the imperfections of
data collection and measurement. This led to further innovations in blockmodeling tech-
niques (see Dorien, Ferligoj, and Batagelj 2024) as well as more relaxed criteria for equiv-
alence, such as “regular equivalence” (D. White and Reitz 1983) and “stochastic equiva-
lence.” The latter is the basis of an approach that has come to be known as the “stochastic
blockmodel” (SBM).

2.1.1 Stochastic Equivalence and Blockmodels

Unlike deterministic blockmodels, which require perfect or near-perfect interchangeabil-
ity between nodes in a block, SBMs partition networks into blocks of stochastically equiva-
lent nodes (Anderson, Wasserman, and Faust 1992; Holland, Laskey, and Leinhardt 1983;
Nowicki and Snijders 2001; Snijders and Nowicki 1997; Wang and Wong 1987; Wasserman
and Anderson 1987). In an SBM, blocks are organized so as to maximize the likelihood of
block membership conditional on hypothesized edge probabilities, and therefore do not
need to be perfectly uniform.

For a simple stochastic blockmodel to describe directed network 𝐴 with 𝑁 nodes, we need
three pieces of information:

1. 𝐸, the total number of edges between nodes in 𝐴;
2. 𝑏, a vector of length 𝑁 containing a block assignment for each node in the network

where each 𝑏𝑛 ∈ 1...𝐵, where 𝐵 is the number of distinct blocks;
3. 𝑝𝑟𝑠, a 𝐵-by-𝐵 matrix where 𝑟, 𝑠 ∈ 1...𝐵, describing the probability of observing an

edge from any node in group 𝑟 to any node in group 𝑠.

Any two nodes in the same block are taken to be stochastically equivalent, which implies
that any node in a given block will send ties to other nodes with the same probability as
any other node in the same block. This is as true of the inter-block edges (𝑝𝑟𝑠, 𝑟 ≠ 𝑠) which
is the probability that a node in one block sends an edge to a node in a different block, as
it is of within-block edges (𝑝𝑟𝑠, 𝑟 = 𝑠) where a node sends an edge to another node in the
same block. It also implies that SBMs can identify blocks in which the nodes do not share
any edges with one another, which is not the case for network clustering methods focused
on cohesion (e.g., modularity-based algorithms such as Louvain and Leiden).

Fitting an SBM to an observed network requires determining the number of non-empty
blocks to use and then partitioning the nodes (𝑏) accordingly. Since the matrix of edge
probabilities (𝑝𝑟𝑠) is determined by the block partition (𝑏), each possible permutation of b
can be viewed as a possible explanation of the data.1 Each of these explanations is assigned
a likelihood (i.e., a probability that it is the ‘correct’ explanation), with likelier explanations
of the data being assigned more weight than less likely explanations.

1. The permutations of 𝑏 must respect the model’s constraints; in most cases, this means that 𝑏 cannot
contain any empty blocks.
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With some empirical networks, an SBM may not initially appear to produce results that
differ meaningfully from those produced by community detection algorithms based on
notions of cohesion rather than equivalence. In fact, certain configurations of the SBM
can be coaxed into producing plausible partitions along similar lines as cohesion-based
methods (Zhang and Peixoto 2020). Closer inspection of the two should, however, dispel
any notion that they are the same.

Consider the case of a random graph with an arbitrary number of nodes, a number of
edges placed between nodes completely at random, and whose density falls somewhere
between ‘dense’ and ‘sparse’ (such as an Edros-Renyi graph with a middling 𝑝 (Erdös and
Rényi 1959)). In most such generated networks, traditional modularity-based methods
such as Louvain are prone to identifying ‘communities’ from random noise (Peixoto 2019).
Blockmodel-based methods do not. The key point here is that ‘traditional’ community
detection algorithms seek to understand networks as they are observed, whereas SBMs seek
to understand how networks came to be, or how they are generated. In this sense, we can
describe most traditional community detection techniques as descriptive (Peixoto 2023)
and SBMs as inferential or generative.

Currently, descriptive approaches to network clustering are more widely used than infer-
ential approaches. This is not necessarily a problem, as neither description nor inference
enjoy any monopoly on the truth – in network science or otherwise – nor does one predom-
inate the other in terms of applicability and utility. Descriptive forms of network clustering
are invaluable for identifying certain features of an observed network, such as determin-
ing which edges are the most vital to community cohesion (e.g., Moody and Mucha 2024).
However, inferential approaches should be used to answer inferential questions, and net-
work analyses concerned with tie formation and other unobserved generative processes
that generate those networks necessarily involve inference (Peixoto 2023).

Peixoto (2023) has proposed a ‘litmus test’ that is helpful in determining whether an infer-
ential approach should be used. The idea is a simple one: after partitioning a network into
groups, we learn that our network was generated randomly. Does this alter the utility of
our partition? If so, then it is likely that an inferential approach is necessary and descrip-
tive approaches are inappropriate. If not, then it is likely that an inferential approach is
not necessary and descriptive approaches are appropriate. In other words, if the genera-
tive process that gave rise to the observed network is relevant, then we need an inferential
approach; if not, description is likely to be as appropriate, if not moreso.

Bayesian approaches to blockmodeling are particularly effective at partitioning networks
given some representation of unobserved generative processes and, unlike many other ap-
proaches to blockmodeling, can determine the most appropriate number of blocks to ac-
count for a given network. Before getting into the details of Bayesian stochastic blockmod-
els (BSBMs), we’ll offer a brief overview of Bayesian inference and latent variable models
for readers who are new to Bayesian statistics. Other readers should feel free to skip to the
subsequent section.
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2.2 The Logic of Bayesian Inference and Latent Variable Models

At its core, the Bayesian approach to inference uses data to update knowledge about one
or more unobserved random variables (McElreath 2020). This is accomplished via Bayes’
ubiquitous theorem, which states that the probability of an event 𝐴 conditional on another
event 𝐵 is equal to the probability of 𝐵 conditional on 𝐴 multiplied by the unconditional
probability of 𝐴 divided by the unconditional probability of 𝐵. The foregoing can be en-
capsulated as such:

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

While Bayes’ theorem is widely accepted and applied across all statistical paradigms and
disciplines, Bayesian inference distinguishes itself by using probability to describe logically-
informed states of belief with respect to a given proposition. By way of contrast: the other
major statistical paradigm, Frequentism, only permits the use of probability for events that
can be sampled from among a population or repeated a theoretically infinite number of
times, and thus does not view probability as compatible with statements about hypotheses,
propositions, or states of belief (Clayton 2021).

Readers familiar with Frequentist inference will know that the standard approach to ordi-
nary least-squares (OLS) regression modelling, for example, stipulates that the relationship
between a dependent variable (𝑦) and one or more independent variables (𝑋) is governed
by a commensurate number of ‘parameters.’ In the simplest case, there is one parameter
for each independent variable (𝛽) plus one parameter for the intercept (𝛼), and the value of
each is considered ‘fixed’ but unknown. Frequentist doctrine demands this; since param-
eter values cannot be sampled from, they do not have a frequency. They are true, or they
are not. As such, Frequentist tests of statistical significance are configured to assess the
plausibility of the observed data assuming the ‘null’ hypothesis (indicating ‘no difference’
or ‘no correlation’) is true. If the data is deemed unlikely enough (with the threshold, 𝛼,
set pre-experimentally), the null is ‘rejected’ in favour of the data-determined ‘alternative’
hypothesis.

In the Bayesian paradigm, unobserved random variables in a model are conceptualized as
latent variables, information about which can be encoded using probability distributions.2

Rather than treating unobserved variables as fully unknown but with an assumed fixed
value (as the Frequentist paradigm does for its parameters), Bayesian inference generally

2. It should be noted that Bayesian inference also uses parameters, but generally reserves the moniker for
a specific class of model setting that is both fixed and known. Prior probability distributions almost always
take the form of parameterized distributions, such as the Gaussian, Poisson, Binomial, or Exponential distri-
butions. In the context of a model, a Gaussian distribution with 𝜇=1 (location) and 𝜎=2 (scale) represents
a perfectly valid prior probability for an unobserved latent variable: in this way, Bayesian models frequently
use parameters to describe prior uncertainty, despite the parameters themselves being known and fixed.
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places ‘weakly informative’ distributions over its latent variables and then updates them
using observed data.3

These distributions (known as ‘priors’, see below) are designed to be consistent with the
knowledge researchers have about the latent variables before confronting them (and the
rest of the model) with empirical data.

Each of the possible values a latent variable can take can be thought of as an individual ‘hy-
pothesis’ about the value of that variable (e.g. the hypothesis that 𝛽=0.59).4 Bayesian infer-
ence seeks to describe the relative plausibility of all such hypotheses (which we’ll represent
using 𝐻) conditional upon a model and observed evidence (the latter of which we’ll repre-
sent with𝐸). This can be accomplished via Bayes’ theorem, which in this setting establishes
that the probability of a hypothesis (𝐻) given some evidence (𝐸) is equal to the likelihood
of that evidence given some hypothesis, multiplied by the unconditional probability of the
hypothesis, divided by the unconditional probability of the evidence. Returning to Bayes’
theorem, but with the new symbols subbed in, we get:

𝑃(𝐻|𝐸) = 𝑃(𝐸|𝐻)𝑃(𝐻)
𝑃(𝐸)

Each of the components in the forgoing expression is individually named:

• 𝑃(𝐻|𝐸) is the probability of a given hypothesis conditional upon the observed evi-
dence. This is our quantity of interest, and it is known as the ‘Posterior Probability’
or ‘Inferential Probability’ (Clayton 2021).

• 𝑃(𝐸|𝐻) is referred to as the ‘Likelihood’ or ‘Sampling Probability’ of the data (Clay-
ton 2021). Likelihood in the Bayesian context is generally identical to that employed
in the classical or Frequentist paradigms. It measures the probability of observing
the evidence we did observe under the assumption that the hypothesis is true.

• 𝑃(𝐻) is called the ‘Prior’, and it represents our extant knowledge about the hypothe-
sis before observing the data. Bayesian models treat priors as latent variables whose
probability distributions are logically determined by the information available to the
researcher (Cox 1946; Jaynes 2003). While some may baulk at the inclusion of prior
information, the use of a prior is essential for producing a posterior probability.

• 𝑃(𝐸) stands for the unconditional probability of the evidence and is sometimes re-
ferred to as the “Bayes Denominator” or the “Marginal Probability of the Data.” In
many applied settings, this value is difficult to conceptualize and impossible to com-
pute analytically. Fortunately, it only serves to normalize the product in the numer-
ator (ensuring that all posterior probabilities sum to 1), and sampling-based tech-
niques such as MCMC largely obviate the need to know it directly (McElreath 2020).

3. This is not always the case, as some models/applications are better served by wholly uninformative priors,
such as a flat prior, or an improper prior such as Jeffries’ prior. Conversely, some models may use strongly
informative priors, which may constrain model behaviour (Zondervan-Zwijnenburg et al. 2017).

4. The number of hypotheses contained in a discrete latent variable is countable, whereas the number of
hypotheses in a continuous latent variable is un-countably infinite.
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The Bayesian use of latent variables confers a great many advantages over the Frequentist
adherence to parameter values. For the purposes of this chapter, the most salient advan-
tage is that Bayesian latent variables are never reduced to a single point estimate: at all
times, they are configured so as to contain complete descriptions of their probability mass
(in the case of discrete variables) or probability density (in the case of continuous variable).
This permits Bayesian inference to sustain consideration of multiple plausible values for
any given latent variable, weighted proportionally to their posterior probability. The Fre-
quentist approach, conversely, identifies a single value that uniquely maximizes likelihood
and discards all others.

Latent variables also permit Bayesian models to run as well ‘forwards’ as they do ‘back-
wards.’ What we mean by this is that any well-specified Bayesian model is as well-suited
for inferential purposes (‘backwards’) as it is for simulation (‘forwards’).5 The inferen-
tial mode – as discussed above – uses data to update prior distributions over a model’s
latent variables using the likelihood of the data, which produces a posterior distribution
for each latent variable. The simulative mode draws samples from the joint distribution of
the model’s latent variables to produce a synthetic dataset – this can be done using prior
information alone (before observing data), or with the latent variables’ posterior distribu-
tions.6

Some, in fact, have gone as far as to use latent variables as a sort of grand unifying princi-
ple, arguing that even observed data is simply a special case of a probability distribution
(McElreath 2020).7 This view is consistent with the Bayesian paradigm’s treatment of mea-
surement error and missing data: the former uses the observed value as a parameter for
a distribution representing uncertainty, and the latter treats the missing value as a latent
variable with a weakly informative distribution determined by observed values from the
same case (McElreath 2020). In this sense, almost all aspects of a Bayesian model – priors,
posteriors, data, and parameters – take the form of latent variables with differing degrees
of uncertainty encoded in their distributions.

2.3 The Synthesis: Hierarchical Bayesian Stochastic Blockmodels

Now that we are armed with the foundational ideas motivating blockmodeling and the
Bayesian estimation of latent variables, we may proceed to their synthesis. As this is in-
tended to be an accessible introduction, we have opted to minimize the technical details

5. The term ‘well-specified’, here, is left intentionally ambiguous. Not all prior distributions lend themselves
to meaningful output in the simulative mode, and flat/improper priors tend to dramatically limit the utility
of a Bayesian model (McElreath 2020). As such, the merit of Bayesian model simulation depends on good
prior specification, a topic that is well beyond the scope of this chapter. Interested readers are encouraged to
consult the ‘Prior Choice Recommendations’ page in the stan GitHub repository.

6. Bayesian model invertability is made more intuitive, we find, when considered in light of the fact that
one model’s posterior is another model’s prior – the only distinction is the amount of information encoded.

7. Namely, one that has all of its probability mass or density on the observed value.
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and encourage those interested in developing a deeper understanding of SMB-family mod-
els to consult foundational and cutting-edge texts on the subject (e.g., Snijders and Nowicki
1997; Nowicki and Snijders 2001; Peixoto 2019, 2023; Zhang and Peixoto 2020).

The Bayesian approach to blockmodeling involves building a generative model and using
it to assess the likelihood of the observed network (𝐴) conditional on the range of possible
hypotheses about the latent variables (Peixoto 2019). By constraining our generative model
so that it adheres to the observed network’s node and inter-block degree counts, the number
of latent variables estimated shrinks from several to just one: 𝑏.

Fundamentally, we are interested in determining the probability that a given node partition
vector 𝑏 of length 𝑁 – which partitions the nodes of network 𝐴 into a number of blocks
(𝐵), with each block consisting of stochastically equivalent nodes – was responsible for
generating network 𝐴. In the now-familiar language of Bayes’ theorem, we arrive at the
following:

𝑃(𝑏|𝐴) = 𝑃(𝐴|𝑏)𝑃(𝑏)
𝑃(𝐴)

Where:

• 𝐴: an 𝑁-by-𝑁 adjacency matrix, where each entry 𝐴𝑖,𝑗 indicates the presence or
absence of an edge between node 𝑖 and 𝑗 (in an undirected network, 𝐴 is symmetric.
In a network without self-loops, the diagonal of 𝐴 is 0).

• 𝑁 : the number of nodes in network 𝐴.
• 𝐵: the number of blocks in a given partition 𝑏.
• 𝑏: a vector of length 𝑁 that indexes the nodes in the network, where 𝑏𝑖 ∈ 1...𝐵 and
𝑖 ∈ 1...𝑁 . Each permutation of 𝑏 represents one possible partition of the network.

• 𝑃(𝑏|𝐴): the posterior probability, or – equivalently – the probability of a partition 𝑏
given the observed network 𝐴. This is our value of interest.

• 𝑃(𝑏): the prior probability of partition 𝑏. Since observed network data is generally
unique, it makes little sense to introduce information to an BSBM via the prior; the
priors, thus, are derived from the observed network.8

• 𝑃(𝐴|𝑏): the likelihood of observing network 𝐴 given partition 𝑏.
• 𝑃(𝐴): the marginal probability of the observed network 𝐴. Direct calculation

thereof is intractable; the need for knowledge of this value is obviated via sampling.

The likelihood term can be expanded further:9

8. For more detail on this aspect of specifying BSBMs, see Peixoto (2019).

9. Since we are only interested in modelling block membership, we are able to greatly simplify our task
through the use of a ‘microcanonical model’ (Peixoto 2019). Borrowed from the field of physics, micro-
canonical modelling permits models to sort their parameters into those with ‘hard’ constraints, and those
with ‘soft’ constraints. By treating invariant aspects of the network – such as inter-block edge counts – as
fixed parameters, we can avoid (potentially intractable) summation and integration signs in our model spec-
ification.
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𝑃(𝐴|𝑏) = 𝑃(𝐴|𝑒, 𝑏)𝑃(𝑒|𝑏)

where 𝑒 is a 𝐵-by-𝐵 matrix and entry 𝑒𝑟𝑠 contains the number of edges shared between
group 𝑟 and group 𝑠.10

With the model specified, all that remains is to estimate the posterior probability distri-
bution 𝑃(𝑏|𝐴). It should be stressed that BSBMs do not identify the single best-fitting
partition (𝑏) to the exclusion of all others, but rather provide the probability of all plausi-
ble partitions.11 This is accomplished via Markov Chain Monte Carlo (MCMC) sampling,
which draws samples from the joint distribution of the model and data proportional to
each combination’s posterior probability (Peixoto 2019). An extremely efficient MCMC
algorithm for sampling from BSBMs can be found in Peixoto’s Python package graph-
tool (Peixoto 2014b).

2.3.1 Model Selection using Minimum Description Length

As is the case with many other unsupervised learning techniques, BSBMs require users
to either pre-specify the number of non-empty blocks (𝐵) or infer the optimal number
of blocks from data. Unless an appropriate number of blocks is known a priori, pre-
specification of 𝐵 is a fraught endeavour. Setting 𝐵 too low paves over the nuances of the
data and using a principle such as likelihood maximization imbues blockmodels with a
concerning propensity for overfitting the observed network by favouring excessively large
numbers of blocks (Peixoto 2019).

Standard practice urges the use of information criteria that reward model likelihood (as
a measure of overall fit) but punish model complexity to guard against overfitting. Most
of the well-known and widely used criteria are not, however, applicable to SBMs. Field
mainstays such as the Akiake Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) make invalid assumptions about SBM likelihood functions (Peixoto 2023).
Fortunately, Bayesian posterior probability happens to be a ‘universal code’ for an infor-
mation theoretic concept known as ‘description length’ (Grünwald 2007), which can be
exploited to provide a principled choice of 𝐵.

A model’s ‘description length’ refers to the amount of information it encodes. It can be
measured using a variety of scales, the most common of which is the ‘bit’ or ‘Shannon’
(Shannon 1948), written using capital sigma (Σ). The concept of Occam’s Razor guides
information theory towards the principle of ‘minimum description length’, which holds
that models should balance providing the best possible explanation of the data with the

10. At this stage, the mathematical model is not yet complete, as the statement of likelihood is not yet directly
computable. Since the purpose of this chapter is to introduce readers to BSBMs, we have elided the model’s
grittier mathematical detail. See Peixoto (2019) for the full specification.

11. One or two explanations of the data may predominate over the others, but a Bayesian model never
formally discards any hypothesis with a posterior probability greater than 0.
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complexity of the model used to do so.12 Peixoto’s (2019) derivation takes the following
steps:

We start from the previous equation describing the BSBM’s likelihood:

𝑃(𝐴|𝑏) = 𝑃(𝐴|𝑒, 𝑏)𝑃(𝑒|𝑏)

Multiplying both sides by 𝑃(𝑏) gives us:

𝑃(𝐴|𝑏)𝑃(𝑏) = 𝑃(𝐴|𝑒, 𝑏)𝑃(𝑒, 𝑏)

The above step places the ‘Bayes Numerator’ on the left-hand side of the equation, which
trivially implies that both sides of the equation above are now proportional to the posterior
probability. We can then establish a proportional relationship with description length via
the bit/Shannon:

𝑃(𝐴|𝑒, 𝑏)𝑃(𝑒, 𝑏) = 2−Σ

Which can be rearranged thus:

𝑙𝑜𝑔2𝑃(𝐴|𝑒, 𝑏)𝑃(𝑒, 𝑏) = 𝑙𝑜𝑔2(2−Σ)
𝑙𝑜𝑔2𝑃(𝐴|𝑒, 𝑏) + 𝑙𝑜𝑔2𝑃(𝑒, 𝑏) = −Σ𝑙𝑜𝑔2(2)

−𝑙𝑜𝑔2𝑃(𝐴|𝑒, 𝑏) − 𝑙𝑜𝑔2𝑃(𝑒, 𝑏) = Σ

The final expression in the above sequence highlights how MDL encodes the trade-off be-
tween model complexity and model fit: with higher values of 𝐵 (more blocks total), the
model does a better job of retrodicting the data, which increases the likelihood (𝑃(𝐴|𝑒, 𝑏)),
decreasing description length. As 𝐵 increases, however, so too does the model complexity,
which increases the entropy of the priors (𝑃(𝑒, 𝑏)), which increases description length.

Because the description length of a model is measured in binary bits/Shannons, it can be
thought of as the number of ‘yes-or-no’ questions one would need to ask to specify and
perfectly recreate the observed data in light of the model (MacKay 2003). The core idea
here is that a model with a lower overall description length will have almost certainly done a
better job of capturing the ‘true’ model, compared to other models with higher description
lengths. In the context of BSBMs, we can think of each different choice of 𝐵 ∈ 1...𝑁 as
representing a different model; MDL provides us with a principled means of determining
which model to select. The best choice of 𝐵, then, is the one that produces the lowest
description length of any 𝐵 ∈ 1...𝑁 .

Most BSBMs can be improved by performing node reassignments via MCMC sampling.
The process of reassigning nodes takes advantage of the fully-specified Bayesian probability

12. The same principle can be found in the other information criteria briefly discussed in the previous para-
graph, AIC and BIC.
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model and its ability to provide full distributions as answers to inferential queries such as
our own. Rather than provide the single most likely partition, any BSBM’s posterior can
be sampled from to recover each node’s probability of belonging to each block (for a given
𝐵). The end result is a distribution of nodewise block memberships, wherein each node’s
probability of belonging to a given block is proportional to the likelihood of the partition
that assigned the node to the block in question.

Finally, while the BSBM approach described above is effective at avoiding overfitting, it is
still prone to underfitting: it can mistake network structure as being the product of random
noise when the structure is, in fact, inferentially meaningful. The solution to this conun-
drum, as proposed by Peixoto (2019), is to situate the node-level BSBM (which has been
the focus of our chapter to this point) at the bottom rung of a potentially infinite series
of hierarchical BSBM models. In essence, the solution involves modelling the blocks of a
node-level BSBM as a network wherein each node represents a block, the edges between
which are weighted according to the observed edge counts in the lowest-level model. This
‘network of blocks’ can itself be partitioned using a higher-level BSBM using similar logic,
procedure, and model selection techniques as the node-level BSBM.13 The resulting blocks-
of-blocks can themselves be modelled in yet another layer of partitioning, and so on ad
infinitium. This layered approach to the BSMB permits the effective recovery of nested net-
work structures without sacrificing the model’s ability to learn from data in the absence of
strongly informative prior information (which would be required to recover complex struc-
ture in a single-layer BSBM). Unless otherwise noted, the Hierarchical Bayesian Stochastic
Blockmodel will be our model of choice throughout the following empirical analyses.

3 EMPIRICAL EXAMPLES

In the second part of this chapter, we present two empirical examples that illustrate the
use of BSBMs and speak more generally to the use of inferential approaches to network
clustering. Our primary goals in this part of the chapter are to (1) illustrate some important
considerations when developing a BSBM, (2) clarify what to expect in terms of results, and
(3) suggest some ways of further interrogating results. To that end, we have selected two
networks that differ in useful and interesting ways. The first is constructed from Enron
email data, the other from data about disinformation campaigns on Twitter.

3.1 The Enron Email Network

Our first example uses a network derived from the ubiquitous Enron email corpus (Klimt
and Yang 2004), which has been used in a wide variety of research contexts, including
classification, agent-based models of communication (Matsuyama and Terano 2008; Van-
Buren et al. 2009), and social network analysis (Aven 2015; Corneli et al. 2019; Leskovec
et al. 2009).

13. In what should be a familiar refrain by now, readers who are interested in the technical aspects of Hier-
archical BSBMs should consult Peixoto (2019, 2023).
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The versions of the Enron email dataset available from Stanford’s SNAP database and from
graph-tool’s built-in network repository are both undirected and binary (Leskovec et al.
2009), but we consider the network to be directed and weighted. Our reasoning for this
is conceptually grounded – in a corporate hierarchy, the direction and volume of email
exchanges might be important. The CEO of a corporation, for example, would receive
more emails from subordinates than vice versa. We include only the ‘core’ employees who
were implicated in the legal proceedings and for whom complete email data and identifying
information is available, forming a more-or-less complete network. For the rest of the
employees, there are no records of their emails amongst each other – only to and from the
core, which the Stanford SNAP database terms “sinks or sources” (Leskovec et al. 2009).
The resulting network consists of 149 nodes with 2582 edges weighted by volume of emails
exchanged (total: 65,143).

In what follows, we use the Python package graph-tool (Peixoto 2014b) to develop BSBMs
that partition the network into blocks that mirror the actual job titles held by employees. In
other words, we will consider the job titles to be a kind of partial “ground truth” for social
roles and see whether our BSBMs can approximate those roles using nothing other than
the relational data. However, despite how integral this dataset is reported to be (Hardin,
Sarkis, and Urc 2015; Wilson and Banzhaf 2009), it lacks definitive metadata about the
job titles of the included employees (Diesner and Carley 2005). We added employee job
title information to the dataset ourselves, building on a version of the dataset with other
corrections made by Ruhe (2016). From there, we attempted to reconcile as many available
versions of the data as we could find. Where there were disagreements between many
versions, or remaining vague job titles, we turned to cached online data from the Internet
Archive and from Google’s web caches. Finally, we used any available LinkedIn profiles of
former Enron employees to further enhance the accuracy of the position labels. We also
decided to work with the raw emails in the data, rather than choosing any single version
of the Enron network to trust.14

Figures 1-4 show results from different BSBMs fit to the Enron email network. Figure 1
and Figure 2 are based on BSBMs that have not been refined through cycles of MCMC
node reassignments. The first uses binary data whereas the second is weighted. Figure 3
and Figure 4 are refined through MCMC node reassignments. Again, the third is based on
binary data and the fourth is weighted.

In these figures, and most others in this chapter, we can see the original complex network
with circular nodes, labelled with each job title. The hierarchical BSBM is superimposed
with square blue nodes, except for Figure 4 and Figure 5, which we clustered using Traag,
Waltman, and Van Eck’s (2019) Leiden algorithm rather than a BSBM for the sake of com-
parison. The original nodes are positioned and coloured according to their block assign-

14. Our investigation left us reasonably confident that our corrections were sound, but also surprised us with
the discovery of job titles that have not appeared in any other dataset to date. We wound up with only five
completely uninformative “employee” titles remaining, as compared to the best case of 25 in the other datasets
that we found. Nonetheless, we by no means claim to have achieved 100% accuracy, given how many other
researchers have had a chance to do the same. The authors welcome and encourage any suggested corrections
to this dataset. The Enron email corpus is still one of the only public datasets of corporate emails, in a world
increasingly rich with such email data – most of latter will never be seen by academic network analysts.
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ments. In cases where there is more uncertainty about the block assignment, the nodes
can be represented as small pie charts that give a rough sense of other plausible block as-
signments. High resolution colour images are available in the online supplement.

Figure 1 shows results for an unweighted BSBM using only Peixoto’s (2014a) highly perfor-
mative clustering heuristic. Inspecting the job titles clustered together in each block, we
can identify a number of blocks that look intuitively homogenous. The CEOs are divided
into different clusters, but they share a block one step up the hierarchy. Two of the three
blocks in this cluster – the ones with the CEOs and COO – are primarily senior manage-
ment and executives, while the third has a number of in-house lawyers and more senior
management. Figure 2 shows results a model that uses edge weights (volume of emails)
as a covariate but is otherwise identical.15 Although there is some consistency with the
results in the first model, as well as a fair share of intuitive clustering, the CEO blocks are
now clustered with a very large block that includes many traders.

Figure 3 and Figure 4 show the result of BSBMs that have been refined through a relatively
modest 10,000 cycles of MCMC node reassignments, after which we assessed the minimum
description length to see whether the model improved.16 The cycles of reassignment can
be tracked and the frequency that a node was placed in a given block provides the marginal
posterior distribution, which serves as an estimate of the probability that this was the best
choice.

Here, ’best choice‘ is meant to imply that some latent social dynamic (i.e., not in the model)
had the most influence on the observed network. A purely hypothetical explanation might
be that certain administrative assistants act as proxies for the CEOs they were grouped with,
sending some portion of the emails that the CEOs would have otherwise sent. This could
just as easily be driven by social steering of staff barbecue plans as it is by work-related
emails. It could also be something as complex as deliberate instruction, meant to make
operations appear “business-as-usual” despite the fraudulent activity happening behind
the scenes.

In the refined unweighted SBM shown in Figure 3, there are some significant changes
that stand out. The two blocks of CEOs and executive management are now clustered
together in the hierarchy, with the other executive block now joining a block of primarily
non-executive employees. Changes in the refined weighted SBM are less visibly apparent
but there is a great deal of information available here for further comparison.

As mentioned previously, we should not be too certain about block assignments where
nodes are colored by pie charts, which indicate the plausibility of some other block as-
signment. One example is the director on the right side of the unweighted network (see

15. The implementation of BSBMs in Python’s graph-tool can incorporate as many edge covariates as you
like into the Bayesian process, beyond the standard edge weights. Including too many covariates does tend to
considerably increase both computation time and the number of blocks. The weighted results for Enron tend
to be a bit less visibly intuitive on most model runs, but this might mean that they are better representing
some process not determined by job title.

16. This refinement process tends to consistently improve the MDL of a model by some amount, however
small, but of course this doesn’t tell us whether the model is good; it merely tells us that it has outperformed
its compatriots.
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Figure 1: The Enron network with job labels, as partitioned using an unweighted BSBM.
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Figure 2: The Enron network with job labels, as partitioned using a weighted BSBM.
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Figure 3: The Enron network with job labels, as partitioned using an unweighted BSBM,
refined through MCMC.
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Figure 4: The Enron network with job labels, as partitioned using a weighted BSBM, refined
through MCMC.
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Figure 2), who was placed alone in a block, but with the possibility of being assigned to
either of the two blocks below. Multiple plausible block assignments like this could mean
that an employee has a diverse set of behaviours in the company, that the model or data
do a poor job of representing their behaviours, or that more than one model is needed to
infer the particular social dynamic where they are more consistent.

Peixoto (2021) has recently implemented a model clustering function in graph-tool that
can help researchers get a sense of whether there are different generative stories consistent
with the data. For each cluster of models, an overall likelihood contribution to the data
can be calculated as a proportion to the other models, out of 100. In the case of the Enron
models, only two clusters ever turn up and the second with less than 0.001 likelihood, so
is not worth exploring here. The uncertainty of some of the individual node assignments,
often seen in directors and managers, would be a better place to look.

For the sake of comparison, we provide unweighted and weighted assortative cluster results
from the Leiden algorithm, using the respective network layouts from the refined SBM
models. The results are shown in Figure 5 and Figure 6, and in Table 1 and Table 2. In both
cases, the Leiden algorithm was run with the additional refinement iterations that ensure
modularity has been maximized to full model resolution (Traag, Waltman, and Van Eck
2019).

Table 1 compares the MDL (i.e., how successfully the model has condensed the information
required to recreate the network) for the six analyses so far (4 partitioned with BSBMs, 2
with Leiden). We can see that the three models with edge weights have significantly longer
description lengths. This is to be expected because MDL compares different ways of mod-
eling the same data. As soon as edge weights or other covariates are added to the network,
the data used to represent with the model has increased. MDL cannot indicate whether the
weighted or unweighted model is preferable. However, for both weighted and unweighted
networks, we can see that the SBMs we refined with 10,000 MCMC runs both slightly out-
perform the unrefined SBMs, and moderately outperform the Leiden algorithm.

Table 1: Minimum Description Length (MDL) comparison for the six Enron analyses.

BSBM BSBM, refined with MCMC Leiden

unweighted 6350.47 6336.73 6660.11
weighted 16763.89 16754.96 16941.6

We can also evaluate our models using another metric from information theory – mutual
information. Mutual information is widely used to evaluate cluster and classification mod-
els by comparing the consensus between a ground-truth label of datapoints and the labels
produced by a model. There have been a number of variants of mutual information in-
troduced to improve on different aspects of the measure, often for different applications.
Here, we use Newman, Cantwell, and Young’s (2020) reduced mutual information (RMI)
score, which was developed with particular attention to evaluating community detection
methods in networks. We can use RMI to calculate the agreement between any clustering
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Figure 5: The Enron network with job labels, as partitioned using an unweighted Leiden
algorithm.
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Figure 6: The Enron network with job labels, as partitioned using a weighted Leiden algo-
rithm.
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– “ground-truth” or not. Our focus, however, will be on how each model performs relative
to the ‘Job Title’ classifications we added to the dataset.

Table 2 shows the RMI scores of pairwise comparisons between the six model examples
above and the employee job titles, with a score of 1 indicating perfect agreement. Con-
trary to the MDL measure, the unrefined variants of the SBM perform better here than the
refined ones, with the weighted unrefined SBM score doubling the second-best score of the
weighted Leiden algorithm.

Table 2: Reduced mutual information (RMI) scores for pairwise comparisons of the six
Enron analyses and the employees official job titles.

Job Title
SBM un-
weighted

SBM
weighted

SBM
refined
un-
weighted

SBM
refined
weighted

Leiden
un-
weighted

Leiden
weighted

Job Title 1
SBM un-
weighted

0.004363 1

SBM
weighted

0.042249 0.557893 1

SBM
refined
un-
weighted

-0.01196 0.866441 0.54449
1

SBM
refined
weighted

0.01394 0.484362 0.74883 0.482392 1

Leiden
un-
weighted

-0.00021 0.61373 0.547643 0.595718 0.465708 1

Leiden
weighted

0.020552 0.4696 0.534218 0.478979 0.437218 0.56049 1

What explains the apparent contradiction between MDL and RMI? Overfitting is a likely
explanation: recall the results of the unrefined weighted SBM (Figure 2), where the two ex-
ecutive blocks were clustered with a higher-order block containing many traders. Traders
are the most common employee label (there are 35 of them), so placing them together in
clusters will disproportionately impact a mutual information score. In this case, the RMI
score is 0.44 when placing all of the traders in one group when every other employee is
in a second group. In this sense, models that cluster the most common label (‘Trader’, in
this case) together will score well on RMI whilst not necessarily featuring a comparatively
laudable MDL score.
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The conceptual caveats here are multiple. We rarely have a “ground truth” available, but
it is also worth stressing the fact that the job titles in this example are only one part of the
“ground truth” – or are, perhaps, a product of a more general “ground truth” that jointly
gives rise to the observed network structure and the job titles. Various norms of corpo-
rate hierarchical structure – such as proscribed efficiency guidelines, proximity, and social
taboos – are also likely to have been influential. Without more information, the only sure
inference to make here is that workplace roles have had some form of influence on who
sent emails to whom.

3.2 Disinformation on Twitter: IRA Tweets

In our second empirical example, we analyze networks derived from a corpus of Tweets
that Twitter determined were the work of Russia’s Internet Research Agency (IRA) as
part of their election interference research initiative.17 In 2018, Twitter began releasing
datasets of activity by accounts that they had identified as state-backed operations (Roeder,
n.d.). Data attributed to Russia’s infamous Internet Research Agency (IRA) was the cen-
terpiece of these releases, containing information on roughly 10 million tweets from 4,611
accounts.

There are two distinct approaches to forming network edges from Twitter: using metadata
(e.g. followers and followees) and using activity data (e.g. mentions, retweets, or replies).
In this case, we aggregated all three forms of activity data. Since the full IRA network is too
large and complex to give a proper treatment in this brief example, we filter the network to
retain only the 1,000 most heavily weighted edges. This leaves 777 nodes in the network,
with 555 identified as affiliated with the IRA and 222 accounts not identified as affiliated
with the IRA. The combined weight of these 1,000 edges is 423,911 – so, a lot of activity.
This network represents the source and target accounts involved in the heaviest amount
of Twitter interaction surrounding the IRA actors. Notably, the data only includes Tweets
made by the IRA accounts, forming a directed network that can still be blockmodeled.

Unlike the Enron data, we know next-to-nothing about the identity of the individuals re-
sponsible – it is likely that each IRA worker was responsible for many such accounts. In-
sofar as Twitter’s undisclosed method for detecting state actors can be trusted as accurate,
we do know that the Twitter accounts in question were acting under the guidance of some
authority. It is also reasonable to assume that the behavior of these accounts is much more
singularly focused than that of corporate employees; if a state-employed Twitter operative
wanted to plan a barbeque with their co-workers, they would do it somewhere other than
in public Tweets from their ‘sock puppet’ accounts. Given what we know about the gener-
ative processes giving rise to this network, one place to start might be to look for evidence
of any coordination at all.

In the four subplots of Figure 7, we show the top 1,000 edges from the IRA network at a
few key time points from a day-by-day tie formation animation. These edges are displayed
in the animation when first established, so although they eventually have the largest edge

17. See https://github.com/fivethirtyeight/russian-troll-tweets/.
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weights, they are drawn on the day when the edge weight was 1 or more. Source nodes are
circled in black if they first interacted with their target on the day of the image. Similarly,
in the online color versions of these figures, the IRA accounts are shown in red, non-IRA
in blue, and deleted accounts in orange. Edges directed to each of those account categories
are coloured in the same scheme.

(a)

(b)

(c) (d)

Figure 7: Activity in the IRA network at four points in time. Subplots B-D show Decem-
ber 12th, 20th, and 21st of 2015, respectively. Subplot A shows the network on
September 7th, 2017, when the last IRA Tweet in the dataset was sent.

Subplot A in Figure 7 shows the network on September 7th, 2017, when the last IRA Tweet
in the dataset was sent. The large swath of edges from the bottom occurred primarily in
the span of two days. They all originated from the same block of IRA accounts, and they
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all targeted the same account, rianru, which is the account of state-owned Russian news
agency RIA Novosti. It would be reasonable to say here that there is evidence of some
form of coordinated action. The other blocks display less dramatic but still distinguishable
patterns.

The IRA Twitter blockmodel might suggest the presence of marked distinctions between
different sets of behaviours, each guided by sets of strategies from senior decision makers.
On the other hand, there is no way to analyze the available data to distinguish between five
distinct blocks of Twitter accounts, each belonging to sets of state employees with official
orders and, for example, five state employees each running multiple accounts as they see
fit – in other words, we can’t easily distinguish top-down coordination from simultaneous
autonomous activity. Likewise, the media focus that surrounded online state-backed be-
haviour during the US election cycle might make it tempting, and legitimately compelling,
to conclude that any identified organized behaviour is supportive evidence of foreign in-
fluence operations. This conclusion is exactly what Twitter suggested when releasing the
data. In reality, disinformation researchers increasingly find that a large portion of online
disinformation is targeted domestically (Grace 2022; Somerville and Heerin 2020).

The network visualizations in Figure 8 show an enlarged view of some key distinct pat-
terns in the network. Subplot A shows a small number of IRA accounts targeting Twitter
accounts of non-descript origin, and primarily spreading conspiracy theories of the time.18

The second image shows activity focused on popular US media organizations, like Mash-
able, The Washington Post, and Fox News. In the third image is a mix, with Al Jazeera,
the Financial Times, and a popular Russia-based satire account as targets. There is a great
deal of in-depth analysis that could be undertaken here, but it does seem evident that the
activity of these accounts was not solely focused on the US election, especially given the
attention paid to RIA Novosti (rianru).

Inference about the goals behind these Twitter strategies might be possible, but not with-
out care – how would a foreign influence objective be distinguishable from purposefully
crafting the impression of foreign influence, for other purposes? And how would the in-
tended audience be identified? When 100 accounts send 10,000 Tweets each at the New
York Times, they are almost certainly not banking on the producers of that newspaper to
consider their statements. In still other settings, it turns out that none of these consid-
erations even matter, where the reality is that bots are just tweeting amongst each other
(Thread 2021).

As the two foregoing analyses have made abundantly clear, BSBMs are powerful tools for
drawing inferences about the processes that give rise to social structure in networks. What
should be equally clear, however, is that researchers must exercise caution when interpret-
ing said inferences. In our analysis of the Enron email network, we saw that BSBMs ad-
mirably retrodict some of the structures we might expect to see in a hierarchical network
of corporate communications, but were equally made aware of the fact that BSBMs do
not necessarily measure any particular kind of ‘ground truth’ – or if they do, that it may
not be the same ground truth researchers expect to draw inferences about. As H. White,

18. Such as Barack Obama being born in Kenya. More recently, these accounts post about Covid-19 con-
spiracies.
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(a)

(b)

(c)

Figure 8: Three different enlarged views of the filtered IRA Network.
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Boorman, and Breiger (1976), Robins (2011); and Nadel ([1957] 2013) are wont to em-
phasize: social roles are complex, embedded, and multifaceted: researchers cannot hope
to apprehend the totality of a social role through the analysis of one kind of social tie. In
our analysis of the IRA disinformation campaign on Twitter, we encountered the pitfalls of
ascribing a causal story to the patterns of behaviour hinted at by the results of a BSBM: the
same results can be easily re-interpreted to support conclusions that emphasize the foreign
influence role of IRA activity, the domestic influence role of IRA activity, or the seemingly
impotent bot-on-bot IRA activity.

4 CONCLUSION

In this chapter, we introduced readers to the Bayesian Stochastic Blockmodel – which is a
powerful inferential counterpart to prevailing descriptive approaches to community detec-
tion and network clustering – and demonstrated the process of applying and interpreting
BSBMs in two very different contexts. As with all unsupervised learning, great care is re-
quired when specifying and drawing inferences from the graph partitions we obtain by
developing and fitting BSBMs. This is not because SBMs are uniquely prone to misappli-
cation or are otherwise unwieldy. BSBMs open many exciting research opportunities for
network scientists by combining decades of insightful work on equivalence, blockmodels,
and network clustering (see Dorien, this volume) with probabilistic thinking and genera-
tive modelling. But, as with all other approaches, we need careful and deliberate analysis
to make inferences about meaningful human behaviour.
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